Random walks with local memory

Lionel Levine, Cornell University

The theme of this talk is walks in a random environment of "signposts" altered by the walker. I'll focus on three related examples:

1. Rotor walk on $Z^{\wedge} 2$. Your initial signposts are independent with the uniform distribution on \{North,East,South,West\}. At each step you rotate the signpost at your current location clockwise 90 degrees and then follow it to a nearest neighbor. Priezzhev et al. conjectured that in n such steps you will visit order $n^{\wedge}\{2 / 3\}$ distinct sites. I'll outline an elementary proof of a lower bound of this order. The upper bound, which is still open, is related to a famous question about the path of a light ray in a grid of randomly oriented mirrors. This part is joint work with Laura Florescu and Yuval Peres.
2. p-rotor walk on Z . In this walk you flip the signpost at your current location with probability 1-p, and then follow it. I'll explain why your scaling limit will be a Brownian motion perturbed at its extrema. This part is joint work with Wilfried Huss and Ecaterina Sava-Huss.
3. p -rotor walk on $\mathrm{Z}^{\wedge} 2$. Rotate the signpost at your current location clockwise with probability p and counterclockwise with probability $1-\mathrm{p}$, and then follow it. This walk "organizes" its environment by destroying cycles of signposts. A native environment -stationary in time, from your perspective as the walker - is an orientation of the uniform spanning forest, plus one additional edge. This part is joint work with Swee Hong Chan, Lila Greco, and Peter Li: https://arxiv.org/abs/1809.04710
